Rock Identification Lab

Natural Disasters ENVI 105 Lab Ray Rector - Instructor

Texture **Types of Rocks** tiermedial ktesito Phaneritic Igneous Rocks course-grained Sedimentary Rocks Achanitic fre-graned Metamorphic Rocks Parphyritic Granite porphyry Andesite porphyr Basalt porphys

02037wmm/Gazaler, In

The Rock Cycle

Three Primary Rock Types 1) Igneous 2) Metamorphic 3) Sedimentary

Key Concept:

The Rock Cycle is Perpetuated by Several Major Processes

Magmatic Activity
 Uplift and Mountain Building
 Weathering, Erosion, Deposition, and Burial of Sediment

Igneous Rocks -

Rocks that form from the cooling of motlen rock (magma), Example: granite and basalt

Sedimentary Rocks -

Rocks that are fromed from pieces of other rocks, Example: sandstone, or that are deposited from the ocean by chemical processes, Example: limestone

Metamorphic Rocks -

Rocks that are changed by heat and pressure without melting, Example: gneiss

The Rock Cycle

Three Primary Rock Types 1) Igneous 2) Metamorphic 3) Sedimentary

Igneous rocks form by the *cooling* and *crystallization* of underground *magmas* and erupted *lavas*.

Igneous rocks are classified by two mineral criteria:

1) Type and % of minerals 2) Crystal size & arrangement

Magma and Lava = Mother Igneous

The mineralogy of an igneous rock is *primarily controlled* by the composition of the magma or lava that it cooled from.

The texture of an igneous rock is *primarily controlled* by the cooling rate of its parent crystallizing magma or lava.

Tectonic Environments for Magma Generation

Lithosphere

© 2001 Brooks/Cole - Thomson Learning

Most Igneous Rocks Form at Plate Boundaries

Predominant Igneous Rock Types at Specific Tectonic Settings

Specific Types of Igneous Rocks Form at Specific Types of Plate Boundaries

Igneous Environments

Basaltic Volcanic Eruptions

Andesitic Volcanic Eruptions

Cooling Rates of Magmas and Lavas Affect Crystal Size

Cooling rates are fast in shallow crust and at surface; this causes magmas and lavas to cool quickly. **Fast-cooling** rates create fine-grained igneous rocks = **Extrusive/Volcanic**

Cooling rates are slow in middle and deep crust and cause magmas and lavas to cool slowly. **Slow-cooling** rates create course-grained igneous rocks = **Intrusive/Plutonic**

Cooling and Crystallization of a Magma Bowen's Reaction Series

 ✓ Early forming minerals are Fe-Mg-Ca rich and silica poor @ high temps

 ✓ Later forming minerals become more richer in Na and silica @ mod temps

 ✓ Last forming minerals are most rich in K and silica @ low temps

✓ Final rock type depends mostly on initial magma composition

- Crystal fractionation processes can also affect magma comp.
 - http://www.rockhounds.com/rockshop/rockkey/index.html

Igneous Rock Classification

Igneous Rocks are classified based on two criteria:

- Mineral Chemical Composition
- ✓ Texture/Grain Size

http://geology.csupomona.edu/alert/igneous/igclass.htm

Igneous Rock Classification

Granitic Plutonic Rocks

Volcanic Rocks

Igneous Chemical Compositions

Coarse

Fine

Vesi-

cular

Glassy

Rhyolite

QUARTZ

K-FELDSPAR

NA-PLAG

Pumice

E

U

R

E

Ultramafic:

- ✓ Very Iron Magnesium Rich
- ✓ Super undersaturated in silica
- ✓ Mantle rocks = Peridotite

Mafic:

- ✓ Iron–Magnesium-Calcium Rich
- ✓ Undersaturated in silica
- \checkmark Oceanic rocks = Gabbro and Basalt

Intermediate:

- ✓ Between Mafic and Felsic/Silicic
- ✓ Saturated in silica
- \checkmark Volcanic Arc rocks = Diorite and Andesite

Felsic/Silicic:

۲

- ✓ Sodium Potassium Aluminum Rich
- ✓ Oversaturated in silica
- Continental rocks = Granite and Rhyolite

Andesite

Obsidian

NA-CA PLAG

AMPHIBOLE

Minerals Present

COMPOSITION

Scoria

PYROXENE

Peridotite Basalt CA PLAG PYROXENE

OLIVINE

Т

E

Х

Т

U

R

Ε

http://www.rockhounds.com/rockshop/rockkey/index.html

Mineral Assemblages of Igneous Rock

Light-Colored

Dark-Colored

Phaneritic Texture:

- ✓ Coarse Grain Size = Slow Cooling
- Plutonic Rocks = Coarse-grained

Aphanitic Texture:

- Fine Grain Size = Fast Cooling
- Volcanic Rocks = Fine-grained

Porphyritic Texture:

 Large crystals in aphanitic groundmass = slow cooling followed by rapid cooling

Porphyry Rocks = Mixed-grain

Vesicular Texture:

- ✓ Fine-grained to glassy with Cavities
- \checkmark Lots of tiny vesicles = pumice
- ✓ Fewer larger vesicles = scoria

Glassy Texture:

- \checkmark Little to no crystals = natural glass
- ✓ Super rapid cooling
- ✓ Obsidian is dark in color.
- ✓ Pumice is light in color

http://www.rockhounds.com/rockshop/rockkey/index.html

Igneous Rock Textures

Igneous Rock Pairs

Classification by texture

Extrusive Basalt Andesite Rhyolite

Intrusive Fine grained Coarse grained gabbro diorite granite

Classification by composition magnesium (Mg) + iron (Fe) = mafic feldspar + quartz (Si) = felsic

Plutonic Rocks = Coarse-Grained Textures

Field Outcrops of Plutonic Rocks

✓ Intrusive -Plutonic
✓ Coarse-grained
✓ Cooled Slowly

Volcanic Rock = Fine-Grained Textures

Porphyritic

<u>Aphanitic</u>

Aphanitic Texture

✓ Extrusive -Volcanic
 ✓ Fine-grained
 ✓ Cooled Rapidly

Combo Plutonic -Volcanic
 Coarse-grained phenocrysts
 in a fine-grained groundmass

First cooled Slow, then Fast

Other Volcanic Rock TexturesGlassyVesicularObsidianVesicular Basalt

Igneous Rocks Under a Microscope

Granite

Rhyolite

Basalt

Obsidian

Welded Tuff

Formation and texture

1. **Pyroclasts** form from airborne lava in violent eruption

2. Extrusive igneous rocks. Cool rapidly on the Earth's surface

3. Intrusive igneous rocks. Cool slowly in the Earth's interior allowing large crystals to form

4. **Porphyry** starts to grow below the surface but before solidification is brought to the surface

Color Index of Plutonic Rocks

Igneous Rock Classification

Add pegmatite to end of name if crystals are > 1 cm (e.g., granite-pegmatite). *Add *porphyritic* to front of name when present (e.g., porphyritic granite, porphyritic rhyolite) *Add *vesicular* to front of name when present (e.g., vesicular basalt).

FELSIC MINERALS (light-colored)

Also refer to

Figure 5.3

Igneous Rock Classification A Three Step Process

1) Determine Texture

- ✓ Specific intrusive texture?
- ✓ Specific extrusive texture?

2) Determine Composition

- ✓ Color Index (plutonic only)
- ✓ Color darkness (volcanic)
- ✓ Mineralogy (observable)

3) Name the Rock

✓ Use Flowchart

Practical Use for Rock?

Igneous Rock Identification Procedure

Step 1: Observe and record the rock's **TEXTURE**

- ✓ Pegmatitic
- ✓ Phaneritic
- ✓ Aphanitic
- ✓ Porphyritic
- ✓ Fragmental
- ✓ Others = vesicular or glassy

Step 2: IF *Phaneritic* or *Pegmatitic*- Identify and record the minerals and the volume % of dark minerals = *COLOR INDEX*. Note: Color index applicable for <u>course-grained rocks</u> ONLY!

IF *Aphanitic* or *Porphyritic* = no to some observable minerals, then estimate composition by the **OVERALL ROCK COLOR**. Note: ("light" = felsic/silisic, "medium" = intermediate, and "dark" = mafic).

Step 3: NAME the ROCK – based on texture/composition combo

Applications

Granite, Diorite and Gabbro - used for flooring, countertops, walls, steps, cobblestone paving, gravestones, and various landscaping applications

Volcanic Rock - used for various landscaping applications

http://www.stonecontact.com/library.asp

Igneous Rock References

http://www.cobweb.net/~bug2/mineral.htm

- http://www.rockhounds.com/rockshop/rockkey/index.html http://www.union.edu/PUBLIC/GEODEPT/COURSES/geo-10/mineral.htm
- <u>http://academic.brooklyn.cuny.edu/geology/grocha/mineral/mineral.html</u>

Sedimentary Rocks Origin, Properties and Identification

Intro to Earth Systems ENVI 110 Lab Ray Rector - Instructor

Sedimentary Rock

Sedimentary Rock Origin and Identification Lab

Weathering and Erosion

Pre-Lab Internet Link Resources

1) http://www.rockhounds.com/rockshop/rockkey/index.html

2) http://earthsci.org/education/teacher/basicgeol/sed/sed.html#top

Major Sedimentary Concepts

- 1) Sedimentary rocks form by depositing, compaction, and cementing of sediment grains, and/or precipitation of crystals from an aqueous solution
- 2) The type of sedimentary rock formed is controlled by two factors: **1)** type of sediment and **2)** depositional environment
- The *five primary depositional environments* of sedimentation worldwide are 1) lakes and river systems, 2) alluvial fans and deserts, 3) shorelines, 4) continental margins (shelves, slopes and rises), and 5) deep ocean floor.
- 4) Source rock, climate, weathering, erosion, and deposition conditions control the nature of the deposited sediments, and hence the types of sedimentary rocks that form at each of the five sedimentary sites described above.
- 5) Sedimentary rocks formed by cementing of clastic grains are called *detrital* rocks.
- Sedimentary rocks formed by the precipitation and/or cementing of shell, skeleton, or plant material are called *biochemical* rocks.
- 7) Sedimentary rocks formed by the precipitation and cementing of material directly from an aqueous solution like seawater are called *chemical* rocks.
- 8) Identification of sedimentary rocks based on two criteria:
 - Texture
 - Composition

Sedimentary Rocks in The Rock Cycle

Key Points:

- 1) Part of rock cycle involving materials, conditions and processes at or near Earth's surface
- 2) Begins with weathering of uplifted, exposed rock
- 3) Continues with the erosion (removal and transportation) of weathered sediment
- 4) Finishes with the deposition and lithification of sediment

The Rock Cycle
Three Primary Rock Types

1) Igneous

2) Metamorphic

3) Sedimentary

Water Cycle = Mother Sedimentary

1) Agents = Sun, Water, Air and Gravity

2) **Processes** = Weathering, Erosion and Deposition

Tectonic Environments and Sedimentary Rock Formation

1) Source regions for sediments are primarily convergent plate boundaries

2) Depositional sites for sediments are primarily the edges of ocean basins

Sedimentary Environments Where Sedimentary Rocks Form

MULTIPLE FACTORS INTERACT TO CREATE SEDIMENTARY ENVIRONMENTS

Predominant Sediment Clast Types at Specific Depositional Settings

Gravel-size

Sand-size

Silt-size

Clay-size

SEDIMENTARY ROCK MODELS

L.S. Fichter, 1993, 2000 http://geollab.jnmi.edu/Fichter/SedRx/sedclass.html

Sediment Clast Types

Silt-size

Clay-size

1) Clast size is a function of transport time and medium

An indicator of depositional environment
 2) Clast shape is a function of transport distance and time
 An indicator of sediment "maturity"
 3) Clast sorting is a function of transport medium
 An indicator of depositional environment

Sediment Composition Classification Three Most Common Sediment Types Forming Sedimentary Rock

Sediments Type Chart

Sediment Mineral Types ✓ Quartz Silts & Sands ✓ Clays ✓ Carbonates **Sediment Rock Types** ✓ Siltstone, Sandstone & Chert ✓ Shales & Mudstones ✓ Limestones & Dolostones

Three Major Groups of Sedimentary Rocks

1) Siliciclastic

- Breccia and Conglomerate
- ✓ Sandstone
- ✓ Siltstone
- ✓ Shale

2) Biochemical

- Limestone and Coal
- Biogenic origin
- ✓ Clastic and Crystalline
- 3) Chemical
 - ✓ Chert, Rock Salt, and Gypsum
 - Inorganic origin
 - ✓ Crystalline

CHEMICAL ROCKS BIOCHEMICAL ROCKS

CARBONATE ROCKS -----

Oolitic rocks	Micrites				
Intraclast rocks	Fossiliferous rocks				
Dolomite (Dolostone)	Pelletal rocks Chalk				
Other Chemical Rocks	Other Biochemical R Peat and Coal				
Kock Salt (Halite)					

Gypsum

http://earthsci.org/mineral/mineral.html

ocks

Breccia Texture:

- ✓ Very coarse-grained
- ✓ Angular fragments
- ✓ Deposits lose to source region

Conglomerate Texture:

- ✓ Very coarse-grained
- ✓ Rounded Fragments
- ✓ Deposits far from source reg

Sandstone Texture:

- ✓ Coarse to medium-grained
- ✓ Mostly quartz and feldspar
- \checkmark Deposits in moving waters

Siltstone texture:

- ✓ Fine-grained = silt-sized
- ✓ Mostly quartz and feldspar✓ Deposits in fairly quiet waters

Shale Texture:

- Very fine-grained = clay-sized
 Mostly clay
- ✓ Deposits in very quiet waters

Sparite Texture:

- ✓ Coarse-grained crystalline
- ✓ Carbonate minerals
- ✓ Halite and Gypsum
- \checkmark With or without fossils

Micrite Texture:

- ✓ Fine-grained crystalline
- ✓ Carbonate minerals
- \checkmark With or without fossils

Coquina Texture:

- ✓ Coarse-grained✓ Mostly shell material
- ✓ Carbonate minerals

Micrite Fine grained calcite

Microcrystalline texture:

- ✓ Extremely fine-grained
- ✓ Smooth, massive looking
- ✓ Deposits in quiet waters
- Chert and Travertine

Sedimentary (Bio)Chemical Textures Clastic and Crystalline

Fossiliferous Texture:

- ✓ Abundant fossils
- ✓ Either crystalline or clastic groundmass
- ✓ Usually carbonate rich

Sedimentary Rock Structures

Ripple Marks

Mud Cracks

Graded Bedding

Cross Bedding

Bioturbation

	SEDIME	NTARY	ROCK ANALYS	SIS AND CLASSIFICA	TION			
ST W	TEP 1: hat is the rock's omposition?	STEP What and of	2: are the rock's text ther distinctive pro	ural operties?	STEP 3: Rock Name(s)			
STIC)			and the second	Rounded grains	CONGLOMERATE			
		Mainly	gravel (≥ 2 mm)	Angular grains	BRECCIA			
				Mostly quartz grains	QUARTZ SANDSTONE	¥		
CLA	Mainly rock fragments	Mainly	sand (1/16 - 2 mm)	Mainly feldspar and quartz	ARKOSE	DSTO		
TAL (feldspar, clay) weathered from other rocks			Sand is mixed with much silt and/or clay (mud)	GRAYWACKE			
ETRI		RE	Mostly silt (1/256 - 1/16 mm)	Breaks into blocks or layers	SILTSTONE	щ		
		nly Mu /16 mu	Mostly clay	Crumbles or breaks into blocks	CLAYSTONE	DSTO		
		wosty city ₩ (< 1/256 mm)		Fissile (splits easily)	SHALE			
12	Mainly plant	Dull bro visible p	wn with plant fragments	Porous and easy to break apart the plant fragments	PEAT			
y tos	fragments or charcoal	Black		BITUMINOUS COAL				
Mainl		Mostly vi a dense	isible shells and shell frag mass	CALCIRUDITE				
ant	Malak facel chails shall	Mostly s	Mostly sand-sized fragments. May have a few larger shells.		CALCARENITE			
orp	Mainly tossil shells, shell fragments, or microfossils Effervesces in dilute HCI	Mostly w and mid	ery fine grained to microc profossils	MICRITE	ESTONE			
hells		Porous,	poorly cemented mass of	COQUINA				
2 S		Mostly w	ery fine grained, earthy, c blossils	CHALK	LIME			
	Mainly crystals of calcite or aragonite. CaCO.	Crystallin	e to microcrystalline ban	TRAVERTINE				
stals	Effervesces in dilute HCI	Spherica	I grains like tiny beads (< tric laminations	OOLITIC LIMESTONE				
I CUNICI	Mainly dolomite CaMg(CO ₃) ₂	Microcry	crocrystalline Effervesces in dilute HCl only if powdered		DOLOSTONE			
CHEMICAL (INOHG) nemically precipitated	Mainly varieties of quartz, SiO ₂ (chalcedony, flint, chert, opal, jasper, etc.)	Microcry	stalline, idal fracture	Scratches glass	CHERT			
	Mainly halite, NaCl	Crystals inorgan precipit	formed as ic chemical ates	Salty taste	ROCK SALT			
	Mainly gypsum, CaSO ₄ · 2H ₃ O	Crystals inorgan precipit	formed as ic chemical ates	Can be scratched with your fingemail	ROCK GYPSUM			
Ö	Mostly iron-bearing minerals, like limonite and hematite	Amorpho	ous or ystalline	Dark-colored, usually brown or red-gray	IRONSTONE			

Discussion and Examination

Sediments and Sedimentary Rocks

http://www.cobweb.net/~bug2/mineral.htm http://www.rockhounds.com/rockshop/rockkey/index.html http://www.union.edu/PUBLIC/GEODEPT/COURSES/geo-10/mineral.htm

Metamorphic Rock Origin and Identification

Intro to Earth Systems ENVI 110 Lab Ray Rector - Instructor

http://www.rockhounds.com/rockshop/rockkey/index.html http://earthsci.org/education/teacher/basicgeol/meta/meta.html http://csmres.jmu.edu/geollab/Fichter/MetaRx/Metaalphab.htm

Major Concepts

- 1) Metamorphic rocks form by recrystallization and/or neocrystallization of preexisting rock (parent rock) in the solid state.
- 2) Most cases of metamorphism occur at or near tectonic plate boundaries.
- 3) Agents of metamorphism include heat, pressure, reactive fluids, and stress.
- 4) Two metamorphic processes are recrystallization and neocystallization.
- 5) Three major types of metamorphism is regional, contact and dynamic.
- 6) The two primary criteria for classifying and identifying metamorphic rocks are composition (mineralogy) and texture (grain size and grain orientation).
- 7) Two major metamorphic rock groups are 1) foliated and 2) nonfoliated.
- 8) Metamorphic rock composition controlled by parent rock composition.
- Texture controlled by combination of metamorphic agents (foliated includes. stress; nonfoliated no stress involved).
- 10) Slate, phyllite, schist and gneiss are the foliated metamorphic rocks.
- 11) Marble, quartzite, hornfels, and granofels are the nonfoliated meta rocks.

The Rock Cycle

Three Primary Rock Types

1) Igneous
 2) Metamorphic

3) Sedimentary

Focus of this presentation is on Metamorphic Rocks

Three Primary Rock Types

1) Igneous

2) Metamorphic

3) Sedimentary

Heat + Pressure = Mother Metamorphic

Hot Chemically-Reactive Fluids and Tectonic Stresses Too!

Environments for Metamorphism

Vast majority of metamorphism takes place at plate boundaries – Why?

1) Heat 2) Elevated Pressure 3) Magma and Hot Fluids 4) Tectonic Stresses

Tectonic Settings and Types of Metamorphism

Tectonic Settings of Metamorphism

- 1) All types of plate boundaries
- 2) Hot spots
- Any other region undergoing mountain building and/or magmatic activity

Types of Metamorphism

Regional Metamorphism (RM)
 ✓ Due to deep burial

✓ From Low T + Low P to High T + High P

2) Contact Metamorphism (CM)

- \checkmark Caused by close proximity to magma and/or very hot fluids
- \checkmark From High T + Low P to High T + High P
- 3) Dynamic Metamorphism (DM)
 - Caused by shearing forces in active fault zones
 - ✓ From Low T + Low P to Mod T + Mod P

Metamorphic Processes and Grade

1) Deep Burial = Pressure + Heat + Tectonic Stresses

- ✓ Process termed Regional Metamorphism
- \checkmark Metamorphic conditions = Low to High grade
- ✓ Produces foliated textures
- ✓ Slates, schist, and gneisses
- 2) Magma Contact = High Heat + Fluids
 - Process termed Contact Metamorphism
 - Metamorphic conditions = Low to High grade
 - Produces non-foliated textures
 - ✓ Quartzite, Marble, and Hornfels

Metamorphic Grade

Parent	Low Grade	High Grade
Limestone	Marble	Marble
Sandstone	Quartzite	Quartzite
Shale	Slate Sch	ist Gneiss
Granite	Sch	ist Gneiss
Basalt	Greenschist	Imphibolite

Metamorphic Grade and Mineral Facies Temperature-Pressure Chart

The Facies Concept

- The presence of a Key Mineral in a metamorphic rock indicates a unique set of Temperature-Pressure conditions
- 2) A specific range of temperaturepressure values constitutes a given Metamorphic Facies
- 3) Each Metamorphic Facies is associated with a unique tectonic setting
- 4) Low-grade metamorphism occurs at low temperatures and pressures
- 5) High-grade metamorphism occurs at high temperatures and pressures

Metamorphic Rock Classification

1.	-				
Original Rock	Texture	Rock Name	Metamorphic Process	Metamorphic Grade	Comments
2			-	-	
mudstone	Foliated	slate	regional	lower	breaks into plates (slaty cleavage)
mudstone	Foliated	phyllite	regional	moderate	more shiny and crenulated than slate
mudstone	Foliated	schist	regional	mod-high	different schists recognized on the basis of mineral content
mudstone granite	Foliated	gneiss	regional	high	well-developed light and dark banding
quartz sandstone	Non-foliated	quartzite	contact	low-high	sugary texture composed of interlocking quartz grains; relatively hard; won't fizz with acid
limestone	Non-foliated	marble	contact	low-high	sugary texture composed of interlocking calcite grains; relatively soft; may fizz with acid
basalt	Non-foliated	metabasalt	contact	low	greenish color due to chlorite

Metamorphic rocks are classified according to several criteria:

- 1) Origin = parent rock
- 2) Texture-Fabric
- 3) Composition-Mineralogy

4) Metamorphic process

5) Grade of metamorphism

Parent Rock - Metamorphic Rock Pairs

Parent	Grd	Rock	Foliation	Comments
	Low	Slate	clea∨age	∨ fine
Shale		Phyllite	clea∨age	'sheen' from fine mica
		Schist	schistocity	mica coarse/visible
	Hi	Gneiss	banding	v coarse
	Med	Green schist	schistocity	green chlorite
Basalt	Į	Ampholite	Banding	black amphibole
	Hi	Blue- schist	schistocity	blue amphibole
Lime- stone	All	Marble	None/ Banding	Calcite dominates minors give color
Sand- stone	All	Quartzite	None	Quartz dominates minors give color

Metamorphic Rock Classification

	_		Rock	Rock Metamorphism Comissest missest composition		Original									
Texture			name	dominant kind	degree	Dominant mineral composition					rock				
Foliated	peu	smooth" frachurad	Slate	regional	grade	clay	orite					i.	shale		
	12 DE	11 OLO	"shiney"	Phyllite	regional	sium ade		c h l	0 0	2				shale	
	coarse grained	"layered"	Schist	regional	ле 9 г	9 E	me gr			E 0		ole	e) [shale
		c e d g r d i	000 9101	000	"bended"	Gneiss	regional	high grade				7 8	amphib	dspar	
p e t	fine grained		Hornfels	con tact				I			fel		shale		
Nonfoliat	ep	re rection with HCI	Quartzite	contact pr regional									quartz sandstone		
	grain	with HCI	Marble	contact or regional					1			calcite	limestone or dolomite		

Common Metamorphic Rocks In Hand Samples

Foliated Metamorphic Textures

Slaty

- ✓ Foliated = Flat, tight-layered sheets✓ Very Fine Grained
- ✓ Little to minerals observable

Phyllitic

- ✓ Foliated = Mildly wavy, sheets
- ✓ Fine-grained
- ✓ Sheen-like luster = mica minerals

Schistose

- ✓ Foliated = wavy, flaky layers
- ✓ Medium to course grained
- ✓ Observable mineralogy
- \checkmark Lots of mica and quartz

Gneissic

- \checkmark Foliated = dark and light mineral bands
- ✓ Medium to course grained
- ✓ Observable mineralogy
- ✓ Quartz, feldspar, biotite, and amphibole

Red Slate

Mica Schist

Close-Up

Foliated Metamorphic Textures

1) Foliated textures result from deviatoric tectonic stresses

2) The type of foliated rock fabric is a function of metamorphic grade
 ✓ Foliation character changes with intensity and duration of metamorphism
 3) The type of foliated rock fabric is also a function of rock composition

Non-Foliated Metamorphic Textures

Microgranular

- ✓ Crystalline
- ✓ Nonfoliated = Equant-shaped grains
- ✓ Very fine- to fine-grained
- ✓ Massive-looking rock
- \checkmark Little to no minerals observable
- ✓ Example = Hornfels

Macrogranular

- ✓ Crystalline
- ✓ Nonfoliated = Equant-shaped grains
- ✓ Medium to coarse-grained
- ✓ Massive-looking rock
- ✓ Identifiable minerals
- ✓ Example: Marble

Granular Fabric

Marble

Metamorphism of Parent Rocks

Textural Changes in Mono-Minerallic Metamorphism

✓ Mono-minerallic rocks are typically non-foliated.

Texture described as "polygonal granular"

Most Common Types of Metamorphic Rocks

Questions:

- 1) Which are foliated?
- 2) Which are nonfoliated?
- 3) Which are monomineralic?
- 4) Which are high grade?
- 5) Which are low grade?
- 6) Which looks mica-rich?
- 7) Which are hard?
- 8) Which are soft?

Common Metamorphic Rocks In Hand Samples

Common Metamorphic Rocks Under a Microscope

Slate

Gneiss

Quartzite

Phyllite

0.25 mm

Marble

Schist

Hornfels

Serpentinite

Metamorphic Rock Classification

A Three Step Process

1) Determine Texture

- ✓ Foliated or Nonfoliated?
- ✓ Type of foliation?
- ✓ Grain size?

TEXTURE		GRAIN SIZE	COMPOSITION	TYPE OF METAMORPHISM	COMMENTS	ROCK NAME	MAP SYMBOL	
0 F		Fine		Regional	Low-grade metamorphism of shale	Slate		
FOLIATEI MINERAL ALIGNMEN	IINERAL	Fine	Fine		(Heat and pressure increase	Foliation surfaces shiny from microscopic mica crystals	Phyllite	* * * * * * * *
	ALA	medium	MICA MICA LUARTZ LUSPAR PHIBOLE ARNET NE	with depth)	Platy mica crystals visible from metamorphism of clay or feldspars	Schist		
BAND- ING		Medium to coarse	AM G/ P/ROXE		High-grade metamorphism; some mica changed to feldspar; segregated by mineral type into bands	Gneiss		
		Fine	Variable	Contact (Heat)	Various rocks changed by heat from nearby magma/lava	Hornfels	$ \begin{array}{c} z = 4 \\ z \\ z \\ 4 \\ 4 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1$	
IATED	Fine	Quartz		Metamorphism of quartz sandstone	Quartzite			
NONFOL		to coarse	Calcite and/or dolomite	Regional or Contact	Metamorphism of limestone or dolostone	Marble		
		Coarse	Various minerals in particles and matrix		Pebbles may be distorted or stretched	Metaconglomerate	10,00,00 10,00,00 0,00,000 0,00,000 0,00,000 0,00,000 0,000 0,00,000 0,000 0,000 0,	

Scheme for Metamorphic Rock Identification

2) Determine Composition

✓ Mineralogy?

3) Name the Meta Rock and its Parent Rock
Classification of Metamorphic Rocks

1 (Shale), slate, and phyllite complete intergrade with each other. Distinctions may be difficult.

2 Soapstone may be weakly foliated.

Metamorphic Rocks Discussion and Examination

Next Week's Lab Topics sostasy and Plate Tectonics

- Definitions and Concepts
- Ocean and Continental Crustal Densities
- Modeling Isostasy
- Isostatic Equilibrium and Adjustment

Pre-lab Checklist

- Reader: Lab 2 Isostasy and Plate Tectonics
- Chapter in Lab Manual
- Do the Pre-lab Activities and Quiz BEFORE lab

GeoTime Scale Quiz Next Week too!!!!!

Bring Lab Reader to class