

Minerals Laboratory

Intro to Earth Systems ENVI 110 Lab Ray Rector - Instructor

http://www.rockhounds.com/rockshop/mineral_id/index.html

Preview of Mineral Lab

I. Nature of Minerals

Where are minerals found?

How do minerals form?

What types of minerals are there?

Minerals' relation to rocks?

The common rock-forming minerals?

Determining the density of minerals & rocks

II. The Physical Properties of Minerals

III. Determining the Identify of a Mineral

What are Minerals? Definition: any *naturally-occurring*, homogeneous solid that has a distinctive internal *crystalline* structure, a *definite chemical composition* and a set of *unique physical properties*. Minerals are usually *formed by inorganic processes*.

What Makes Each Mineral Unique?

A mineral's crystal structure and chemical composition together determine the mineral's unique physical properties

Where are Minerals Found?

Short Answer = Everywhere!

- 1) Igneous Rocks
- 2) Sedimentary Rocks
- 3) Metamorphic Rocks
- 4) Sediment

How do Minerals Form?

1)Crystallization from a cooling magma or lava

2) Crystallization from aqueous solutions

3) Crystallization from preexisting minerals

Mineral Assemblages
Mineral Growth under Stress

Bowen's Reaction Series

Common Igneous Rock-forming Minerals Crystallizing from a Magma

Compositon Mafic, Higher-Temp Minerals **Bowen's Reaction Series** intrusive/extrusive rock types High **Ca-Plagioclase** first silicate minerals to crystallize Temperature olivine Ultramafic discontinuous series of crystallitation continuous series of crystallitation calcium-rich peridotite/komatite Olivine Mafic Cooling magma 3) Augite (pyroxene) gabbro/basalt Sodium-rich feldspar Amphibole Hornblende (amphibole) Intermediate diorite/andesite biotite mica Felsic/Silicic, Lower-Temp potassium feldspar **Minerals** Felsic muscavite granite/rhyolite mica Low quartz temperature 1) Na-Plagioclase last to crystallize

- 2) Biotite
- 3) Potassium Feldspar
- 3) Quartz
- 4) Muscovite

The Rock Cycle

Three Primary Rock Types 1) Igneous 2) Metamorphic 3) Sedimentary

Key Concept:

The Rock Cycle is Perpetuated by Several Major Processes

Magmatic Activity
 Uplift and Mountain Building
 Weathering, Erosion, Deposition, and Burial of Sediment

Igneous Rocks -

Rocks that form from the cooling of motlen rock (magma), Example: granite and basalt

Sedimentary Rocks -

Rocks that are fromed from pieces of other rocks, Example: sandstone, or that are deposited from the ocean by chemical processes, Example: limestone

Metamorphic Rocks -

Rocks that are changed by heat and pressure without melting, Example: gneiss

Mineral Density

1) Mineral density is an important intensive property

- 2) Mineral ensity is a function of mineral's mass and volume
- 3) The density of a mineral is a measure of how much mass is present in a given unit of volume.

 \succ The more mass a substance has per unit volume, the greater the substance's density.

The less mass a substance has per unit volume, the lesser the substance's density.

$$Denisty = \frac{mass}{volume} \quad or \ D = \frac{m}{v}$$

Elements - Mass and Density

e

Periodic Table of Elements

	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	
1	1 ¹ H Hydrogen 1.00794	Atomic # Symbol Name Atomic Mass	С	Solid		[Metals			Nonmet	als						2 ² He Helium 4.002802	K
2	3 ² Li Lithium 6.941	4 22 Be Beryllium 9.012182	Hç H	Liquid Gas		Alkali me	Alkaline earth met	Lanthanoid	metals	Poor met	Other nonmetal	Noble ga	5 ² / ₃ B Boron 10.811	6 2 4 C Carbon 12.0107	7 25 N Nitrogen 14.0087	8 2 0 0xygen 15.9994	9 ² / ₇ F Fluorine 18.9984032	10 ² Ne ^{Neon} 20.1797	K
3	11 ² Na Sodium 22.98976928	12 2 Mg Magnesium 24.3050	Rf	f Unknow	'n	tals	as A	Actinoids		a s	(A)	ses	13 28 3 Al Aluminium 26.9815386	14 ² Si Silicon 28.0855	15 28 P Phosphorus 30.973762	16 ² S Sulfur 32.085	17 28 CI Chlorine 35.453	18 ² Ar Argon 39.948	K L M
4	19 ² K ¹ Potassium 39.0983	20 28 Ca Calcium 40.078	21 28 29 20 20 20 20 20 20 20 20 20 20 20 20 20	22 28 Ti 10 Titanium 47.887	23 28 V 11 Vanadium 50.9415	24 28 Cr 13 Chromium 51.9961	25 Mn Manganese 54.938045	² ² ² ² ² ² ² ² ² ⁸ ¹⁴ ² ¹⁴ ² ¹⁴ ²	27 28 Co 25 Cobalt 58.933195	28 28 Ni 16 Nickel 58.6934	29 28 Cu 18 Copper 63.548	30 ² Zn ¹⁸ Zinc 65.38	31 28 18 18 18 18 18 18 18 18 18 18 18 18 18	32 Ge ¹⁸ ¹⁸ ⁴ ^{72.64}	33 2 As ¹⁸ ¹⁸ ⁵ ^{74.92160}	34 28 Selenium 78.96	35 28 Br 7 Bromine 79.904	36 ² Kr Krypton 83.798	K L M N
5	37 28 Rb 18 Rubidium 85.4678	38 28 Sr 32 Strontium 87.62	39 28 Y 92 Yttrium 88.90585	40 28 Zr 18 2 2 2 2 2 2 2 2 2 2 2 2 2	41 28 Nb 18 Niobium 92.90638	42 28 Mo 13 Molybdenum 95.98	43 Tc Technetium (97.9072)	² ⁸ ⁴ ¹⁸ ¹⁸ ¹⁸ ¹⁸ ¹⁸ ¹⁸ ¹⁸ ¹⁸	45 28 Rh 18 18 18 102.90550	46 28 Pd 18 Palladium 108.42	47 28 Ag 18 Silver 107.8882	48 28 Cd 18 Cadmium 112.411	49 28 In 18 Indium 114.818	50 28 Sn 18 18 4 Tin 118.710	51 28 Sb 18 Antimony 121.780	52 28 Te 127.60 52 18 18 18 18 18 18 18 18 18 18 18 18 18	53 28 18 18 18 7 Iodine 120.90447	54 28 Xe 18 Xenon 131.293	K L M N O
6	55 2 Cs 18 Caesium 1 132.9054519	56 2 Ba ¹⁶ 8 8 8 8 10 10 10 10 10 10 10 10 10 10 10 10 10	57–71	72 28 Hf ¹⁸ Hafnium 2 178.49	73 28 Ta 18 Tantalum 2 180.94788	74 28 W 18 Tungsten 183.84	75 Re Rhenium 186.207	² ² ² ² ² ² ² ² ² ²	77 28 Ir 18 18 18 18 15 15 192.217	78 28 Pt 18 Platinum 1 195.084	79 28 Au 18 Gold 1 196.966569	80 28 Hg 18 Mercury 200.59	81 28 TI 38 Thallium 204.3833	82 2 Pb 32 Lead 4 207.2	83 28 Bi 18 Bismuth 208.98040	84 2 Polonium (208.9824)	85 28 At 18 Astatine 7 (209.9871)	86 28 Rn 32 Radon (222.0176)	K L M N O P
7	87 2 Fr 32 Francium 2 (223)	88 2 Ra 16 Ra 28 18 18 18 18 21 18 21 18 21 18 21 18 21 18 21 18 21 18 21 18 21 18 21 18 21 21 21 21 21 21 21 21 21 21	89–103	104 28 Rf 32 Rutherfordium 2 (261) 2	105 28 Db 322 Dubnium 11 (282) 2	106 28 Sg 32 Seaborgium 22 (268) 22	107 Bh Bohrium (264)	² ⁸ ⁸ ² ² ² ² ² ² ¹⁰⁸ ¹⁸ ¹⁸ ¹⁸ ²² ²² ²² ²² ¹⁴ ²⁷⁷	109 28 Mt 18 Meitnerium (288) 25	110 28 Ds 32 Darmstadtium 17 (271)	111 28 Rg 18 Roentgenium (272) 111	112 28 Ununbium 22 (285) 28	113 Uut Ununtrium (284) ² ⁸ ¹⁸ ³ ² ⁸ ¹⁸ ³ ² ⁸ ¹⁸ ³² ¹⁸ ³² ¹⁸ ³² ³² ¹⁸ ³² ³² ³² ³² ³² ³² ³³ ³³ ³⁴ ³⁵ ³² ³² ³² ³² ³² ³² ³³ ³³ ³⁴ ³⁵ ³	114 Uuq Ununquadium (289) ¹⁸ ¹⁸ ¹⁸ ²³ ²³² ¹⁸ ⁴ ⁴	115 Uup Ununpentum (288) 115 18 18 18 18 18 18 18 18 18 18	116 Uuh Ununhexium (292) ² ³⁰ ¹⁸ ³² ³² ¹⁸ ³² ³² ³² ³⁶ ³⁶ ³² ³² ³⁶ ³⁶ ³⁶ ³² ³² ³⁶ ³⁶ ³⁶ ³² ³² ³⁶	117 Uus ^{Uhurseptum}	118 Uuo Ununoctium (294) ² 8 18 32 32 18 8	KLMNOPQ
				1	For elem	ents wit	n no sta	ble isoto	pes, the	mass n	umber o	of the iso	tope with	n the Ion	gest hal	f-life is ir	n parentl	neses.	

Design and Interface Copyright © 1997 Michael Dayah (michael@dayah.com). http://www.ptable.com/

Determining Material Densities

Metal and Wood Block Densities:
1) Determine Mass (grams) with flattop scale.
2) Determine Volume (cubic cm) with ruler

Length x height x width

3) Only measure the thick redwood block and oak blocks

$$Denisty = \frac{mass}{volume} \text{ or } D = \frac{m}{v}$$

Determining Rock Sample Density

Rock Densities:

1) Determine Mass (grams) with flattop scale

2) Determine Volume (cubic cm) with graduated cylinder

Displacement method

3) Calculate Density by Dividing Mass by Volume

The Water Displacement Method

1) Useful for determining the volume of irregular solid objects.

- 2) You need a graduated cylinder and water.
- 3) An object's volume will displace an equal volume of water in the graduated cylinder.

The Lab Model:
1) Dark Rock as Ocean Crust
2) Light Rock as Continental Crust

Suspended Immersion Method

Step 1 – Weigh dry rock sample

Step 2 – Fill 300 ml beaker with ³/₄'s full of water and weigh

Step 3 – Place dry rock sample (in mesh bag) into beaker and reweigh

Step 4 – Place bag with rock in beaker of water and reweigh

Step 5 – Calculate difference in weights = equals the sample volume

Step 6 - Calculate the density of the sample by dividing the sample mass (in g) by the volume (in cm₃).

Various Types of Minerals

- ✓ Over 4000 Species
- ✓ Grouped into Categories
- ✓ Silicate group is by far the largest and most important mineral group
- ✓ Only about 20 minerals make up 95%+ of all rocks
- ✓ Minerals are identified by their Chemical and Physical Properties

1) Quartz

- 2) Na- Plagioclase
- 3) Ca- Plagioclase
- 4) K-Feldspar
- 5) Hornblende (amphibole)
- 6) Augite (pyroxene)
- 7) Olivine
- 8) Tourmaline
- 9) Garnet
- 10) Biotite
- 11) Muscovite
- 12) Chlorite
- 13) Kaolin (clay)
- 14) Calcite
- 15) Dolomite
- 16) Gypsum
- 17) Halite
- 18) Magnetite
- **19) Hematite**
- 20) Limonite
- 21) Pyrite
- 22) Epidote
- 23) Serpentine

Common Rock-Forming Minerals

Ca-Plagioclase Feldspar

Na-Plagioclase feldspar

Orthoclase feldspar

Quartz

Hematite

Most of the Common Rock-Forming Minerals are Silicates

Common Rock-Forming Minerals by Color

Dark-Colored Minerals

- 1) Ca-Plagioclase
- 2) Hornblende (amphibole)
- 3) Augite (pyroxene)
- Olivine
- **Biotite** 5)

Light-Colored Minerals

- 1) Na-Plagioclase
- 2) Potassium Feldspar
- 3) Quartz
- 4) Muscovite
- 5) Calcite
- Gypsum 6)

Ca-Plagioclase Feldspar

Na-Plagioclase feldspar

Orthoclase feldspar

Hematite

Mineral Reference Samples

Mineral Reference Samples

Important Mineral ID Properties

- 1) Crystal Form & Habit
- 2) Luster
- 3) Color
- 4) Hardness
- 5) Cleavage
- 6) Other properties
 - Specific Gravity
 - Streak
 - Reaction to acid
 - Magnetic
 - Taste

Mineral Habit

Defined:

Characteristic external habit or shape of an individual crystal or groups of crystals

Crystal habit is divided into several categories, based on:

Internal crystal structure

External crystal shape

Habit is useful for mineral ID

Crystal Habit

- Crystal habit is the ideal shape of crystal faces.
- Ideal faces require ideal growth conditions.
- Many descriptive terms are used to characterize habit.

Mineral Luster

Defined: The quality of reflected light emitted by a mineral crystal

Luster can divided into two useful categories:

Metallic and Nonmetallic Nonmetallic lusters can be further subdivided into:

Glassy, Pearly, Waxy, and Dull Luster is useful for mineral ID

Metallic Luster

Nonmetallic Luster

http://cmsc.minotstateu.edu/Labs/web%_______

Mineral Streak

Defined: The color of the crushed powder of a mineral left on a porcelain plate

 ✓ Very useful for determining the metallic minerals

 ✓ Only works is mineral has lower hardness than the streak plate

 ✓ Only useful for the metallic minerals

Mineral Color

Defined: The hue and shade of the reflected light emitted by a mineral crystal

Mineral color can divided into two useful shade categories:

Dark-colored and Light-colored

Color can also divided into the hue categories:

White, Gray, Black, Red, Orange, Yellow, Green, Blue, Purple, etc.

Color is useful for mineral ID

<u>http://cmsc.minotstateu.edu/Labs/web%20minerals/minerals%20lab.html</u>

Mineral Hardness

 Mohs Hardness Scale
 Identify Mineral by Testing for Hardness
 Doing the Scratch Test
 Other Testing Objects

Mineral Cleavage

Defined: Geometric planes of inherent weakness through a mineral crystal

✓ Each mineral has a unique identifying cleavage property

 ✓ A mineral has either none, one, two, four, or six sets of cleavage

 ✓ Cleavage is observed as shiny parallel planes on the surfaces of a mineral crystal

Determining Mineral Cleavage

No Cleavage

Example = Quartz

One Set of Cleavage

Example = Muscovite

Two Sets of Cleavage

✓ 90 degrees

 \checkmark Example = Augite

Two Sets of Cleavage

- ✓ 120 & 60 degrees
- ✓ Example = Hornblende

Determining Mineral Cleavage

Three Sets of Cleavage

Three Sets of Cleavage

Reaction to Acid – The "Acid" Test

Defined: Some minerals react to acid solution (HCI) they start to bubble and dissolve

✓ Good for determining the
 Carbonate minerals

 ✓ Use the acid test only if you think that your unknown mineral has low hardness – close to 3.

 Typically either calcite or dolomite

http://academic.brooklyn.cuny.edu/geology/grocha/mineral/mineral.html

Magnetism – The "Magnet" Test

Defined: Some minerals are magnetic – some weakly, some strongly. A magnet will stick to a magnetic mineral.

✓ Good for determining the certain *magnetite and hematite*

✓ Need a hand-held magnet.

Fluorescence- The "Black-light" Test

Defined: Some minerals fluoresce under ultraviolet light.

Good for determining the certain Ore and Gem minerals
 Need a hand-held black-light instrument.

http://academic.brooklyn.cuny.edu/geology/grocha/mineral/mineral.html

Distinguishing Between K-Feldspar and Plagioclase

Potassium Feldspar

- ✓ Salmon pink to cream colored
- ✓ Wavy "flame-like" streaks

Plagioclase Feldspar

- Dark grey to off-white colored
- Sets of thin, straight, groove-like striations on some cleavage faces

Density of Minerals

- 1) Density is an important physical property of minerals and rocks
- 2) Density is a function of a substance's mass and volume
- 3) The density of a substance is a measure of how much mass is present in a given unit of volume.
 - The more mass a substance has per unit volume, the greater the substance's density.

The less mass a substance has per unit volume, the lesser the substance's density.

$$Denisty = \frac{mass}{volume} \quad or \quad D = \frac{m}{v}$$

4) Gravity controls the weight of a given volume of a substance, based on the substance's density
➤ The more dense the material, the heavier it weighs.
➤ The less dense the material, the less it weighs.

Mineral and Rock Density

A mineral's color and density is primarily attributed to its elemental composition:

Abundant lighter elements = Lighter-colored silicate = Lower density Abundant heavier elements = Darker-colored silicate = Higher density

A rock's density is controlled by its mineral composition

Which is denser? Granite or Gabbro?

Comparison of Common Silicates

SYSTE	MATIC CLASSIF	CATION	OF SIL	CATE N	INERALS		tetrahedr apex tow
Dr. James Silicate	Martin-Hayden, EEES-1010	Silica Content	Fe/Mg‡	Al†	Cleavage	Density	‡Ferromagnesians †Alluminosilicates
Structure	Example Mineral	(%SiO ₂)	Content	content	Hardness	Color	
Isolated Silicates	Olivine	~16%	~50%	0%	none 6½	~4 g/cm ³ green	Comprises most of the <i>Mantle</i>
Single Chain Silicates	<i>Pyroxene</i> [#] Group (e.g., Augite)	25-50%	‡ 18-26%	(†) 0-16%	2 (90°)	~3.3 black	Found in <u>basalt</u> <u>Oceanic Curst</u> with Ca-Plag. [#]
Double Chain Silicates	<i>Amphibole</i> [◊] Group (e.g., Hornblende)	50-60%	‡ 15-22%	0-9%	2 (120°-60°) 5½	~3.3 black	Found in Continental Crust
Sheet Silicates	Mica Group (e.g., Biotite ⁰)	39%	18-33%	¢%	1 (perfect)	~3.0 black	Found in Continental
(e.g., <i>Muscovite</i> [°])		39%	. 0%	20%	21/2	2.8 slvr	Crust
	<i>Clay</i> Group (e.g., Kaolinite)	46%	0%	21% †	Microscopic platelets	2.6 green or gray	From chemical weathering of silicates*
Frame- work Silicates	FeldsparGroup,Plagioclase(Na^{\diamond} - $Ca^{\#}$)Orthoclase (K^{\diamond})	43-69% 76%	0%	† 10-19% 10% †	2 (90°)	2.6 wht-blk 2.7 pink	<i>Ca Plag.</i> [#] in <u>Oceanic Crust</u> Others <i>Contin</i> ⁶ .
	Quartz (pure SiO_2^{\diamond})	↓ 100%	! ~.0%	0%	none (fracture)	2.6 white to gray	Concentrated in <i>Continental</i> Environments

pex away from you VOU Isolated Silicates Single Chain Silicates **Double Chain Silicates** Sheet Silicate

Silicon-oxyge tetrahedron

Silicon-oxygen

General trends toward bottom: Increasing SiO₂, Decreasing Fe/Mg, Lighter in density, Lighter in Color Other Trends

- #Oceanic crust (basalt) is mostly pyroxene and Ca-plagioclase (Ca-Feldspar) and thus more dense and dark.
- Continental crust (e.g., granite) contains minerals rich in silica, low in iron, and thus less dense and light in color.

Earth Has Two Types of Crust:

 Less dense, thicker continental crust made up of mainly light-colored granitic (felsic) rocks
 More dense, thinner, oceanic crust made up of mainly dark-colored, basaltic (mafic) rocks

Determining Mineral Rock Sample Density

Procedure to Determine Density:

- 1) Determine Mass (grams) with flattop scale
- 2) Determine Volume (cubic cm) with graduated cylinder
 - ✓ Displacement method

3) Calculate Density by Dividing Mass by Volume

The Water Displacement Method

1) Useful for determining the volume of irregular solid objects.

- 2) You need a graduated cylinder and water.
- 3) An object's volume will displace an equal volume of water in the graduated cylinder.

The Lab Model:1) Dark Rock as Ocean Crust2) Light Rock as Continental Crust

Hypothesize on Rock Density Determinations

1) Make a hypothesis on which rock will be denser and which rock will be less dense.

Granite (continental) versus Gabbro (oceanic)?

2) Determine the densities of the two rock types

3) Analyze your results for a conclusion

Mineral Identification Procedure

- Step #1 Mineral Luster?
- **Step #2** Mineral Color? Light or Dark? Hue?
- **Step #3** Mineral Hardness?
- **Step #4** Mineral Cleavage?
- **Step #5** Other Defining Properties?
- **Step #6** Mineral Name?

Unknown Minerals

- 1) Pyroxene (hornblende)
- 2) Muscovite
- 3) Plagioclase Feldspar
- 4) Calcite
- 5) Quartz
- 6) Tourmaline
- 7) Halite
- 8) Pyroxene (augite)
- 9) Potassium-Feldspar
- 10) Garnet
- 11) Biotite
- 12) Gypsum
- 13) Olivine

ENVI110 REFERENCE MINERALS

<u>Sample#</u>	<u>luster</u>	<u>color</u>	<u>hardness</u>	<u>cleavage</u>	<u>other</u>	Name the Mineral
T001						Calcite
T002/T03	7				(Ca-Plagioclase/Labradorite
T011						_ Tourmaline
T013						_ Garnet
T015 _						K-spar/Microcline Feldspar
T017 _						_ Muscovite mica
T024 _						_ Gypsum
T035						Biotite mica
T040						Hornblende amphibole
T044 _						Olivine
T045 _						_ Augite pyroxene
Т048					H	K-spar/Orthoclase Feldspar
T050						Quartz
T051 _						Na-Plagioclase/Albite