Geology Lecture Outline –

Crustal Deformation – (Ch 10)

 

I. Lecture Content

       Introduction - Makings of High Places

       Deformation - Stress and Strain

       Structural Geology - Folding, Faulting, and Shearing

      

II. Introduction

      A. Deformation and Mountain Building

               1. Spectacular crustal upheavals are the results of:

·       ·     Same forces that power plate tectonics

·       ·     Interplay between crustal rocks and the global

and regional-scale deviatoric stresses created

by inter-plate motions

       

                2. Deformation events are typically part of much larger

                     regional mountain building events called orogenies.

 

III. Deformation

      A. Stress and Strain - Defined

              1.  STRESS Defined:

ü    ü   Force applied to a given area of rock

ü    ü   Stress = Force/unit area

 

·        ·      Stress causes strain (deformation) in rocks

 

·        ·      Stress applied to a rock can be exerted:

 

ü    ü   Equally in all directions = Isostatic stress

 

ü    ü   Unequally from 2 directions = Deviatoric stress

                       

·        ·      Deviatoric Stress can be exerted in several ways

 

ü    ü   Compressional

ü    ü   Tensional

ü  ü  Shearing

 

2. STRAIN

·        ·      Defined:

ü    ü   Changes in the shape and/or volume of a rock

 

·        ·      Strain means the same thing as "deformation"

 

·        ·      Strain is the result of stress

ü    ü   Stress is the cause

ü    ü   Strain is the effect

 

·        ·      Three types of strain are recognized -

ü    ü   Elastic

ü    ü   Plastic

ü    ü   Fracture

 

·        ·      The type of strain is dependent upon the response of

        rocks to a particular stress

 

·        ·      Factors that control the type of strain in a rock

ü    ü   Kind of applied stress

ü    ü   Amount of pressure (force)

ü    ü   Temperature

ü    ü   Rock type

ü    ü   Length of time under stress

 

                3. Stress and Strain Illustrated

·        ·      See Figures

 

       B. Three Types of Deviatoric Stress

 

              1. Compressional Stress

·        ·      Defined:

ü    ü   External forces applied toward one another

 

·        ·      Rock under compressional stress results in:

ü    ü   Shortening in the direction of stress

 

ü    ü   Thickening perpendicular to the stress

 

ü    ü   Deformation in the form of folding and faulting 

 

                2. Tensional Stress

·        ·      Defined:

ü    ü   External forces acting in opposite direction along

     the same line

 

·        ·      Rock under tensional stress results in:

ü    ü   Lengthening/extension in the direction of stress

 

ü    ü   Thinning perpendicular to the stress

 

ü    ü   Deformation in the form of faulting 

 

                3. Shear Stress

·        ·      Defined:

ü   ü   External forces acting parallel to one another

but in opposite directions

 

·        ·      Rock under shearing stress results in:

ü    ü   Displacement of adjacent layers along closely

      spaced planes in the direction of stress

 

ü   ü   Deformation in the form of folding, faulting, and

shear zones 

 

C. Three Types of Strain

1. Elastic Strain

·        ·      Rocks behave in an elastic fashion

 

ü    ü   Stressed rock returns to its original shape and

       volume when the stress field is removed

 

·        ·      Elastic behavior in rock common in the upper crust

 

2. Plastic Strain

·        ·      Rocks behave in a plastic fashion

 

ü    ü   Stressed rock remains deformed after the stress

      field is removed

 

·        ·      Amount of plastic deformation in rock depends on its

      degree of ductility

 

ü    ü   Rocks that are said to be "ductile" are able undergo

       large amounts of plastic strain

 

ü    ü   Rocks that are said to be "brittle" are not able to

undergo much plastic strain

 

·        ·      Plastic behavior common in the lower crust

 

                 3. Fracture Strain

·        ·      Rocks behave in a brittle fashion

 

ü    ü   Stressed rock breaks into two or more pieces

    before the stress field is removed

 

ü    ü   Rock remains deformed after stress is removed

 

·       ·     Brittle-Fracture behavior common in the upper crust.

  

IV. Structural Geology

      A. Geologic Structures

              1. Bodies of rock that are distinguished by their geometric

                     arrangement of both rock types and structural elements

                        such as size, layering, shape, and orientation.

 

                2. Many types of geologic structures are the result of

                      deformation events such as uplift, folding and faulting

 

B. Orientation of Structural Layering

                1. Strike - Definition

 

                2. Dip - Definition

 

                3. Determining Strike and Dip

 

       C. Graphic Illustrations of Geologic Structures

                1. Geology Maps

 

                2. Block Diagrams

 

        D. Fold Structures

              1. Fold defined:

·        ·      Originally planar feature that is now bent

ü    ü   Planer features like bedding

 

·        ·      Bending process is plastic deformation

 

              2. Anatomy of a Fold

·        ·      Fold limb = "cline"

 

·        ·      Fold axis = Line separating limbs

 

·        ·      Axial plane = Plane equally separating limbs

 

3.Three Basic Types of Fold Structures

·        ·      Monoclines

ü    ü   Simple bend with only one bent limb

 

ü    ü   Illustrated in Figure

 

·        ·      Anticlines

ü    ü   Convex-upward fold

 

ü    ü   Limbs dip away from each other

 

ü    ü   Oldest layers exposed in the core part of fold

 

ü    ü   Illustrated in Figure

 

·        ·      Synclines

ü    ü   Concave-upward fold

 

ü    ü   Limbs dip towards each other

 

ü    ü   Youngest layers exposed in the core part of fold

 

ü    ü   Illustrated in Figure

 

4. Fold structures can be oriented in several different ways

·        ·      Upright fold

ü    ü   Fold axis is horizontal

 

ü    ü   Axial plane is vertical

ü   ü   Illustrated in Figure

 

·        ·      Inclined fold

ü    ü   Fold axis is horizontal

ü    ü   Axial plane is inclined

ü    ü   Fold limbs dip at different angles

ü    ü   Illustrated in Figure

 

·        ·      Overturned fold

ü    ü   Fold axis is horizontal

ü    ü   Axial plane is inclined

ü    ü   Both fold limbs dip in the same direction

ü    ü   Illustrated in Figure 13.13(b)

 

·        ·      Recumbent fold

ü    ü   Fold axis is horizontal

ü    ü   Axial plane is inclined to near horizontal

ü    ü   Illustrated in Figure

 

·        ·      Plunging fold

ü    ü   Fold axis is inclined (plunging)

ü    ü   Axial plane is vertical

ü    ü   Illustrated in Figure

 

5. Two special types of fold structures

·        ·      Domes

ü    ü   Circular to oval-shaped anticline

ü    ü   All rock layers dip away from center of dome

ü    ü   Oldest rocks exposed in center of structure

 

·        ·      Basins

ü    ü   Circular to oval-shaped syncline

ü    ü   All rock layers dip towards the center of basin

ü    ü   Youngest rocks exposed in center of structure

 

6. Folds are typically the result of compressional stresses

      acting on plastic-behaving layered rock.

      

      E. Fault Structures

1. Fault defined:

· ·   A fracture along which opposing crustal blocks move

                             parallel to the fracture surface (plane of the fault)

 

2. Anatomy of a Fault - (See Figure )

·        ·      Hanging wall block

 

·        ·      Footwall block

 

·        ·      Fault plane (dip and strike)

 

·        ·      Fault scarp

               

3. Three Basic Types of Fault Movement

·        ·      Pure Dip-slip

ü    ü   Relative fault motion parallel to dip direction

 

ü    ü   Relative fault motion can be either hanging wall

       up or hanging wall down

 

·        ·      Pure Strike-slip

ü    ü   Relative fault motion parallel to strike direction

 

ü    ü   Relative fault motion can be either right lateral or

       left lateral

·       ·      Oblique-slip

ü    ü   Relative fault motion has both dip and strike

       directional components

 

ü   ü   Relative fault motion can be any which way

 

              4.  Three Basic Types of Faults

·        ·      Normal faults

ü    ü   Hanging wall moves down relative to footwall

 

ü    ü   Caused by tensional stress

 

ü    ü   Associated with divergent tectonics

 

·        ·      Reverse faults

ü    ü   Hanging wall moves down relative to footwall

 

ü    ü   Called a thrust fault if fault plane angle < 45°

 

ü    ü   Caused by tensional stress

 

ü   ü   Associated with convergent tectonics

 

·        ·     Strike-slip faults

ü    ü   Opposing blocks move laterally to each other -

          either right-laterally or left-laterally

 

ü    ü   Caused by shearing stress

 

ü    ü   Associated with transform tectonics

 

              5. Faults are the result of deviatoric stresses acting on

                    brittle-behaving rock

 

     F. Joint Structures

            1. Joint defined:

· ·   A fracture along which no movement has occurred, or

        movement occurred perpendicular to joint surface

 

·        ·     Lack of movement along fracture plane is difference

     between joints and faults

 

     2. Commonest strain-related structures in rocks

 

             3. Formation of joint fractures

·        ·      Caused by either compression, tension, or shear stress

 

·        ·      Typically caused by a release of pressure

 

·        ·      Also caused by the rapid cooling of magma or rock

 

·        ·      Joint-forming process a shallow crustal phenomenon

 

·        ·      Typically form either columnar or sheet-like patterns

 

 

V. Vocabulary – Crustal Deformation and Structural Geology - CH10

 

Anticline

Basin

Compression

Continental accretion

Craton

Deformation

Dip

Dip-slip fault

Dome

Elastic strain

Fault

Fault plane

Footwall block

Fracture strain

Hanging wall block

Joint

Monocline

Normal fault

Oblique-slip fault

Orogeny

Plastic strain

Plunging fold

Reverse fault

Shear stress

Shield

Strain

Stress

Strike

Strike-slip fault

Suture zone

Syncline

Tension

Terrane

Thrust fault