
Introductory Geology Lab

Geology 101 Lab Spring 2017 SDCCD Instructor: Ray Rector

First Day Agenda

- Course Description
- Review of Course Syllabus
- Safety Instruction
- Instructor Background
- Student Introductions
- Scientific Method Activity
- Units and Measurement Skills
- Unit Conversions Activity
- Density Measurement Activity

Course Description

- Hands-on, Inquiry-based Lab and Field Activities that Examine the Features and Processes of the Earth, Ocean and Atmosphere
- Topics Include:
 - Scientific Method
 - Topographic Mapping
 - Plate Tectonics
 - * Minerals
 - Rocks
 - Geologic Dating
 - ⋆ Structural Geology
 - Geologic Mapping
 - ***** Shoreline, Desert and River Systems
 - Weather and Climate

Course Design

Laboratory-Based Format Course Activities Include:

- Group-centered, hands-on, inquiry-based lab exercises
- ★ Field trips
- ⋆ Online interactive exercises
- Lab discussion forums
- Demonstrations
- Instructor presentations

Courre Syllabur

- Basic Logistics
- Course Objectives
- Important Enrollment Dates
- Instructor's Attendance Policy
- Classroom Do's and Don'ts
- Grading
- Field Trips
- Extra Credit
- Classroom Website
- Schedule of Study
- Safety Concerns

<u>www.geościrocks.com</u>

Mesa Geo 101 Lab Link Or Miramar Geo 101 Lab

Laboratory Safety Issues

Laboratory Safety Rules

- 1) No food or drinks allowed in lab at any time. Drinks to be stored outside of lab.
- Everyone must wear closed-toed shoes while in lab no exceptions. Any student who shows up without closed-toed shoes on will not get credit for that days laboratory work.
- 3) Any/all lab accidents, injuries, or unsafe medical/health conditions/events however minor must be reported to the lab instructor immediately.
- Only authorized lab experiments or procedures can be preformed. All authorized experiments or procedures must be performed as described and/or demonstrated by the laboratory instructor.
- 5) Personal belongings need to be stored in a place that will not impede students' movement in and around the lab, nor clutter lab table space.
- 6) Horseplay, running, or other potentially unsafe activities while in lab is strictly forbidden.
- 7) When the fire alarm goes off, everyone must leave the lab room immediately in a calm orderly fashion to the designated outside emergency assembly area. Know, where the assembly area is located.

Wise Suggestions for my Students of Earth Science

- 50% Motivation 50% Perspiration
- SHOW UP for ALL laboratory meetings
- DO the Pre-lab assignment BEFORE the corresponding laboratory meeting
- ASK lots of questions
- BE PROACTIVE in lab and field activities and discussions
- HAVE FUN learning about the Earth

Instructor's Academic Background
Instructor's Connection with Ocean
Instructor's Role in Classroom
Instructor's Teaching Philosophy

9

Ano am

EARTH SCIENCE EDUCATION

California Single Subject Teaching Credential – Geosciences -California State University, San Marcos, CA

- > 35 graduate-level semester units completed; GPA = 3.9
- Cross-Cultural Language and Academic Development
- Additional emphasis of technology in the classroom

Earth Science Doctoral Program – Volcanism and Tectonics University of California Riverside, Riverside, CA.

- > 38 graduate-level semester units completed; GPA = 3.9
- Graduate Division Fellowship
- Mineralogical Society of America scholarship

Master of Science Degree – Igneous Petrology San Diego State University, San Diego, CA

> 35 graduate-level semester units completed; GPA=3.9

Achievement Rewards for College Scientists Scholarship

Bachelor of Science Degree - Magna Cum Laude - Geology San Diego State University, San Diego, CA

- > 172 semester units completed; GPA = 3.8
- Outstanding Senior Research Award--College of Sciences
- Outstanding Research Award—Department Of Geology

Engineering Undergraduate Program California State University, Northridge, CA

Marine Engineering emphasis

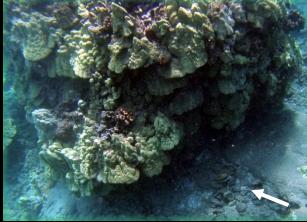
TEACHING EARTH SCIENCE

Cuyamaca College, El Cajon, CA Oceanography Lecture	2013 - Present
University of San Diego, San Diego, CA Earth Science Laboratory	2007 - Present
MiraCosta College, Oceanside, CA	2004 - Present
 San Diego Miramar College, San Diego, CA Geology Laboratory Online Oceanography Lecture 	2003 - Present
San Diego Mesa College, San Diego, CA Online Geology Lecture Geology Laboratory 	2002 - Present
University of California Riverside, Riverside, CA Seneral geology, Historical geology, Mineralogy, Optical mineralogy, Igneous petrology, and Metamorphic petrology	1994-1997
 San Diego State University, San Diego, CA General geology laboratory Advanced field geology course in Baja, Mexico. 	1991-1993

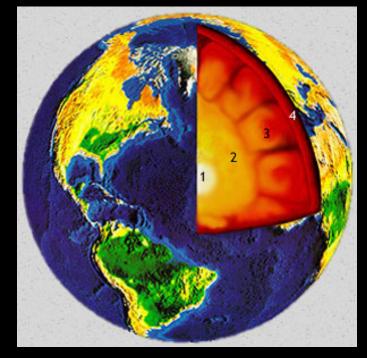
Professor's Interests

Travel to Cool Places, Adventure, Hanging Out, and Partying with Fun and Interesting Friends

This Summer's Big Adventure – The Big Island



Outdoor Sports



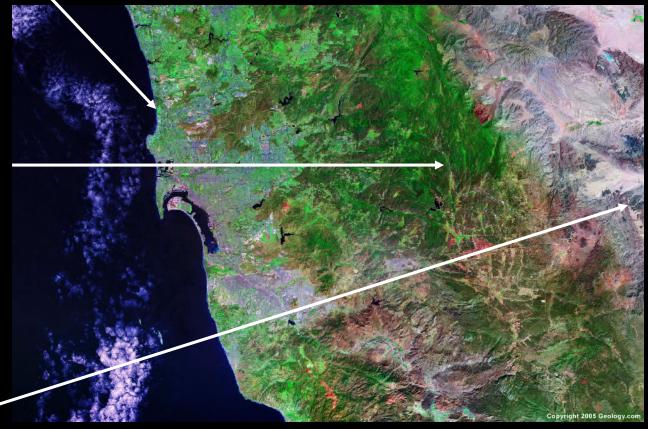
Who are You?

Your Name Academic Focus Personanl Interests

Wishing Everyone a Great Spring Session

Geology of Planet Earth

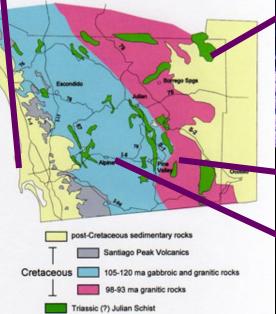
The Coastal Geology



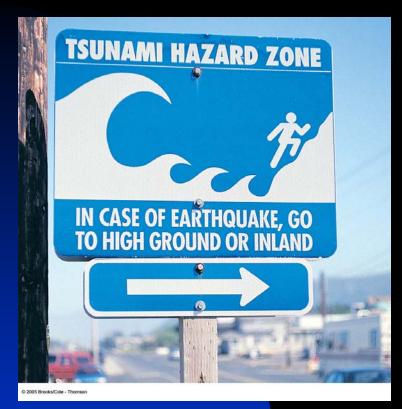
Backcountry Geology

Desert Geology

Geology of San Diego County


Geology of San Diego

Metamorphic


Sedimentary

eneralized Geologic Map of San Diego County

Igneous

Local Natural Hazards

Homes on cliffs of Pacifica, CA

Question:

What other geologic hazards do we face in San Diego?

What is Geology?

Geology is the scientific study of the Earth

An interdisciplinary science

Seismic Studies

Marine Studies

Volcanic Studies

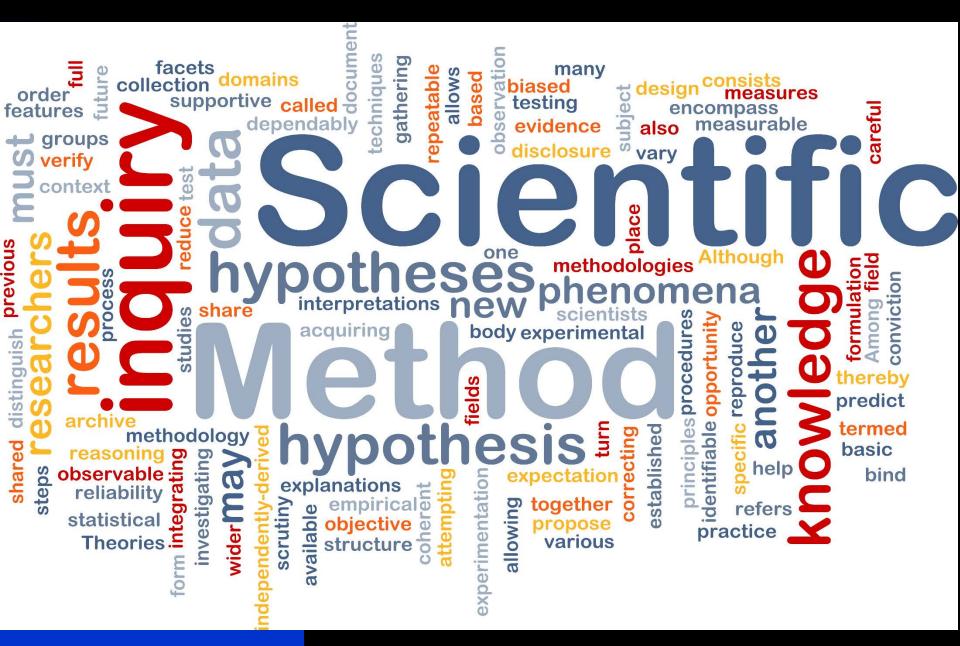
GEOLOGY --- an Interdisciplinary Science

Geology integrates many different types of geosciences

- Mineralogy and Petrology the study of minerals and rocks
- Marine geology the study of Earth's ocean bottom
- Geochemistry- study of chemical nature of rocks, minerals and fluids
- Hydrology study of rivers, groundwater, flooding, dams
- Volcanology study of the nature and distribution of volcanoes
- Engineering geology- design and construction of structures
- Structural geology form and development of geologic structures
- Geophysics study of forces and mechanisms of geologic phenomena
- Environmental geology study of geological resources and pollution
- Petroleum geology Locate. assess, and extract oil and natural gas

What Do Geologists Do?

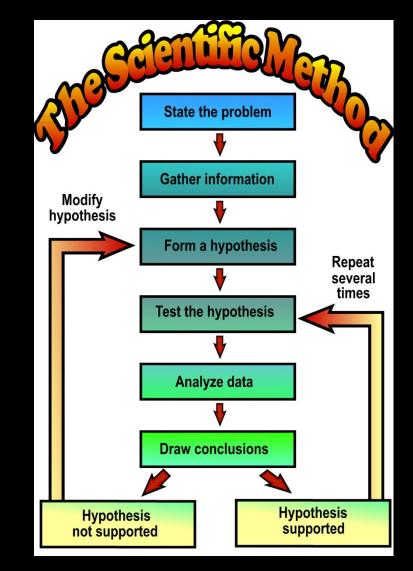
Answer: ...they do earth science.



Science defined: The investigation and acquisition of useful, reliable knowledge of earth's crust that is based on empirical observations (physical evidence).

- Earth scientists use a powerful way of thinking, that is rational, logical, and organized, called *scientific thinking*.
- Intelligence, imagination, creativity, inspiration, and luck are other important attributes of scientific study.
- Earth scientists use a powerful approach to inquiry called the scientific method.

Central to science is community and peer review.


The Scientific Method – Heart of Science

THE SCIENTIFIC METHOD

The Basic Components

 Empirical Observations ✓ Questions / Problems Hypotheses / Models ✓ Predictions ✓ Tests / Experiments ✓ Analysis of Results ✓ Draw Conclusions Reevaluate Hypothesis

Note: The scientific method is NOT a recipe - it's a process 25

Today's Ocean Lab: Investigation and Application of the Scientific Method

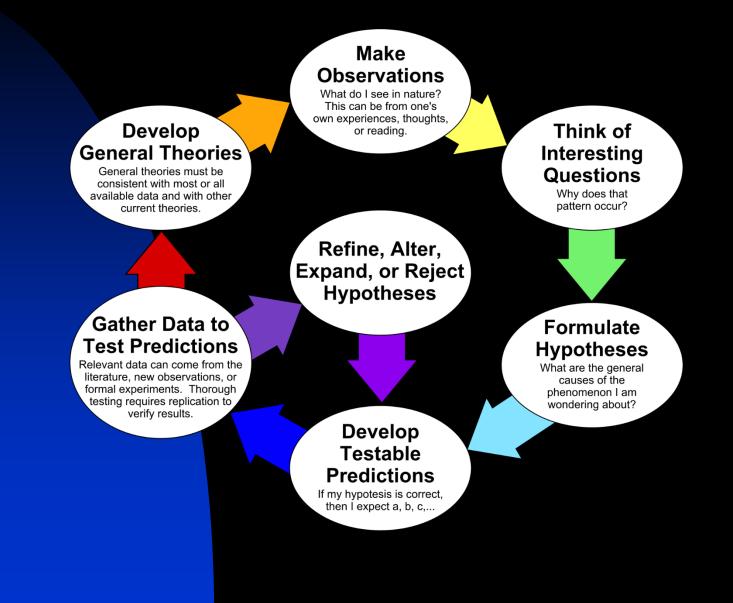
Investigation and Application of the Scientific Method

Scientific Method

OBSERVATION

HYPOTHESIS

-A


ANALYZE DATA

CONCLUSION

Scientific Method is an Ongoing Process

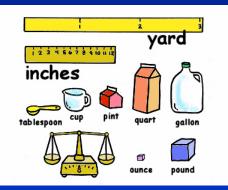
Scientific Observations

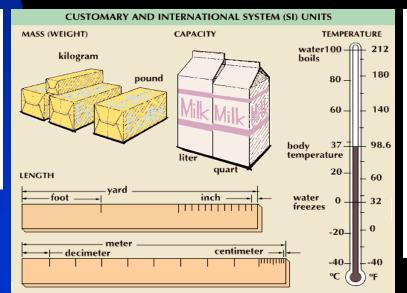
Making Observations

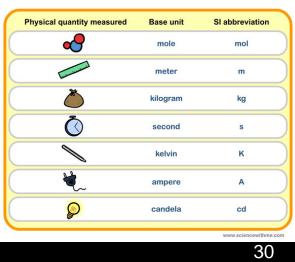
There are two different types of observations - qualitative observations and qualitative observations.

Quantitative Units of Measurement

US Standard System of Units

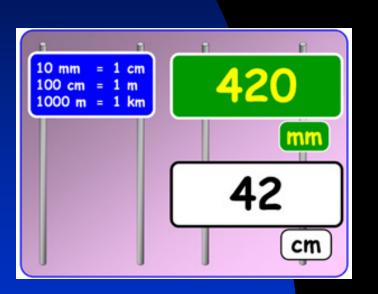

inch/foot square foot ounce/gallon ounce/pound second Fahrenheit


Measurable Physical Quantities


- 1) Distance -
- 2) Area -
- 3) Volume -
- 4) Mass -
- 5) Time -
- 6) Temperature -

International Metric System of Units

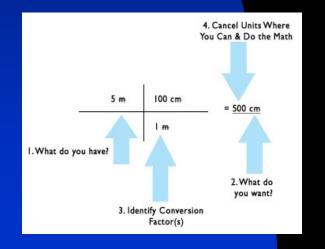
centimeter/meter square meter milliliter/liter gram/kilogram second Kelvin/Celsius

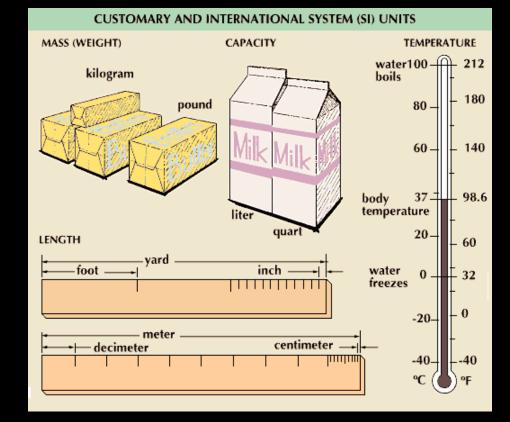


International Metric Units

Quantity measured	Unit	Symbol	Rel	atio	nship
	millimeter	mm	10 mm	=	1 cm
Length, width,	centimeter	cm	100 cm	=	1 m
distance, thickness, girth, etc.	meter	m			
	kilometer	km	1 km	=	1000 m
	milligram	mg	1000 mg	=	1 g
Mass	gram	g			
("weight")*	kilogram	kg	1 kg	=	1000 g
	metric ton	t	1 t	=	1000 kg
Time	second	S			
Temperature	degree Celsius	°C			
	square meter	m²			
Area	hectare	ha	1 ha	=	10 000 m²
	square kilometer	km²	1 km²	=	100 ha
	milliliter	mL	1000 mL	=	1 L
Volume	cubic centimeter	cm ³	1 cm ³	=	1 mL
Volumo	liter	L	1000 L	=	1 m³
	cubic meter	m ³			
Speed, velocity	meter per second	m/s			
	kilometer per hour	km/h	1 km/h	=	0.278 m/s

Metric Unit Prefixes


Prefi x	Symbo I	Facto r	Numerically	Name
giga	G	10 ⁹	1 000 000 000	billion**
mega	Μ	10 ⁶	1 000 000	million
kilo	k	10 ³	1 000	thousand
centi	С	10-2	0.01	hundredth
milli	m	10 ⁻³	0.001	thousandt h
micro	μ	10 ⁻⁶	0.000 001	millionth
nano	n	10 ⁻⁹	0.000 000 001	billionth**


Converting Units of Measurement

Setting Up the Problem:

Example: Convert 15 m to ? cm

Converting Units

Make sure to:

- 1) Find the proper conversion factor for the two units
- 2) Set up the equation with all numeric values having a unit symbol
- 3) Do the conversion making sure that the old unit cancels

APPROXIMATE CONVERSIONS FROM ENGLISH UNITS
TO SI UNITS

SYMBOL	WHEN YOU KNOW	MULTIPLY BY (CF)	TO FIND	SYMBOL			
	LENGTH						
in	inches	25.4	millimeters	mm			
ft	feet	0.305	meters	m			
yd	yards	0.914	meters	m			
mi	miles	1.61	kilometers	km			
		AREA					
in²	square inches	645.2	square millimeters	mm ²			
ft²	square feet	0.093	square meters	m²			
yd²	square yard	0.836	square meters	m²			
ac	acres	0.405	hectares	ha			
mi ² square miles		2.59	square kilometers	km²			
VOLUME							
fl oz	fluid ounces	29.57	milliliters	mL			
gal	gallons	3.785	liters	L			
ft ³	cubic feet	0.028 cubic meters		m ³			
yd ³ cubic yards 0.765		0.765	cubic meters	m ³			
	NOTE: volumes	greater than 1000 L sl	hall be shown in m ³				
		MASS					
oz	ounces 28.35 grams		grams	g			
lb	pounds	0.454	kilograms	kg			
T short tons (2000 0.90 lb)		0.907	megagrams (or "metric ton")	Mg (or "t")			
	TEN	IPERATURE (exact de	grees)				
°F	Fahrenheit	5 (F-32) ÷ 9	Celsius	34∘ c			

Metric Conversion Chart and Table

Length

	•		
1	centimeter (cm)	=	10 millimeters (mm)
1	inch	=	2.54 centimeters (cm)
1	foot	=	0.305 meters (m)
1	foot	=	12 inches
1	yard	=	3 feet
1	meter (m)	=	100 centimeters (cm)
1	meter (m)	\cong	3.281 feet
1	furlong	=	660 feet
1	kilometer (km)	=	1000 meters (m)
1	kilometer (km)	\cong	0.62137119 miles
1	mile	=	5280 ft
1	mile	=	1.61 kilometers (km)
1	nautical mile	=	1.85 kilometers (km)

Area

Weight

5		
1 milligram (mg) =	0.001 grams (g)
1 gram (g)	=	0.001 kilograms (kg)
1 gram (g)	\cong	0.035 ounces
1 ounce	=	28.3 grams (g)
1 ounce	=	0.0625 pounds
1 pound (lb)	=	16 ounces
1 pound (lb)	=	0.45 kilograms (kg)
1 kilogram (ł	<g) =<="" td=""><td>1000 grams</td></g)>	1000 grams
1 kilogram (ł	≺g) ≅	35.27 ounces
1 kilogram (ł	≺ g) ≅	2.2 pounds (lb)
1 stone	=	14 pounds
1 short ton	=	2000 pounds
1 metric ton	=	1000 kilograms (kg)

Temperature

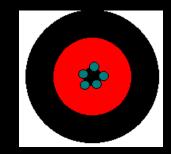
1 square foot	=	144 square inches
1 square foot	=	929.03 square centimeters
1 square yard	=	9 square feet
1 square meter	\cong	10.76104 square feet
1 acre	=	43,560 square feet
1 hectare	=	10,000 square meters
1 hectare	\cong	2.47 acres
1 square kilometer	=	100 hectares
1 square mile	\simeq	2.59 square kilometers
1 square mile	=	640 acres

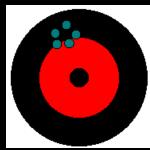
Speed

			_
Speed			-ahrenh
1 mile per hour (mph)	\simeq	1.467 feet per second (fps)	ſe
1 mile per hour (mph)	=	1.61 kilometers per hour	라
1 knot	\simeq	1.15 miles per hour	eit
1 foot per second	\simeq	0.68 miles per hour (mph)	Ť
1 kilometer per hour	\simeq	0.62 miles per hour (mph)	

Volume

1 US tablespoon	=	3 US teaspoons
1 US fluid ounce	\cong	29.57 milliliters (ml)
1 US cup	=	16 US tablespoons
1 US cup	=	8 US fluid ounces
1 US pint	=	2 US cups
1 US pint	=	16 US fluid ounces
1 liter (I)	\cong	33.81 US fluid ounces
1 liter (I)	=	1000 milliliters (ml)
1 US quart	=	2 US pints
1 US gallon	=	4 US quarts
1 US gallon	=	3.785 liters


55 50 45 40 30 25 20 15 10 5 0 -10 -5 -10 -15 -20 -10 -25 -30 -35


Celsius

Accuracy, Precision and Uncertainty in Measurement

- 1) **Accuracy** of the measurement refers to how close the measured value is to the true or accepted value.
- 2) **Precision** refers to how close together a group of measurements actually are to each other.
- 3) Accuracy can be determined by only one measurement, while precision can only be determined with multiple measurements.
- Precision has nothing to do with the true or accepted value of a measurement, so it is quite possible to be very precise and totally inaccurate.
- 5) When precision is high and accuracy is low, the fault can lie with the instrument.

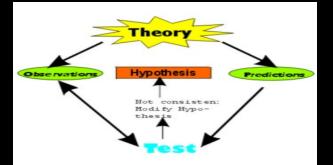
Significant Digits or Figures

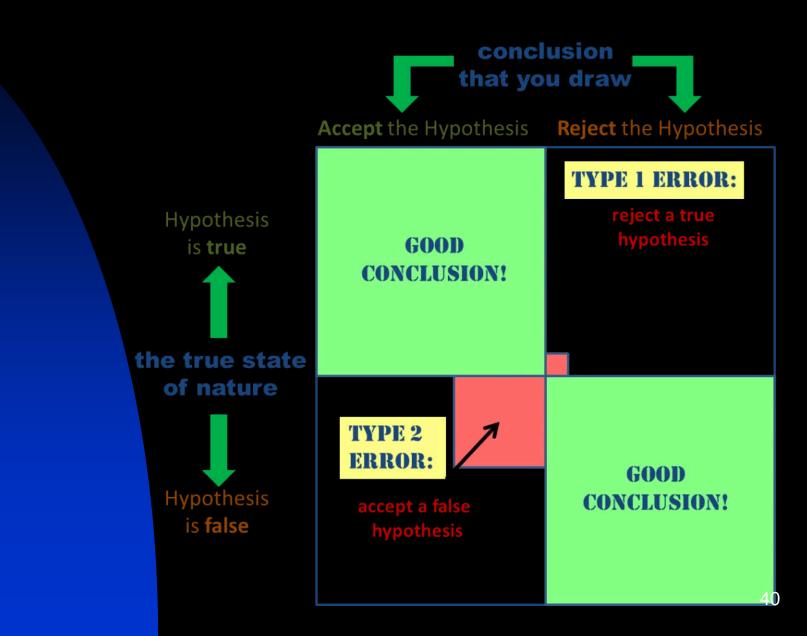
Rules For Significant Digits

- **1. Digits from 1-9 are always significant.**
- 2. Zeros between two other significant digits are always significant
- 3. One or more additional zeros to the right of both the decimal place and another significant digit are significant.
- 4. Zeros used solely for spacing the decimal point (placeholders) are not significant.

EXAMPLES	# C	OF SIG. DIG.	COMMENT
453 g		3	All non-zero digits are always significant.
5057 L		4	Zeros between 2 sig. dig. are significant.
5.00 ml		3	Additional zeros to the right of decimal and a sig. dig. are significant.
0.007 km		1	Placeholders are not sig.

Hypotheses and Scientific Testing



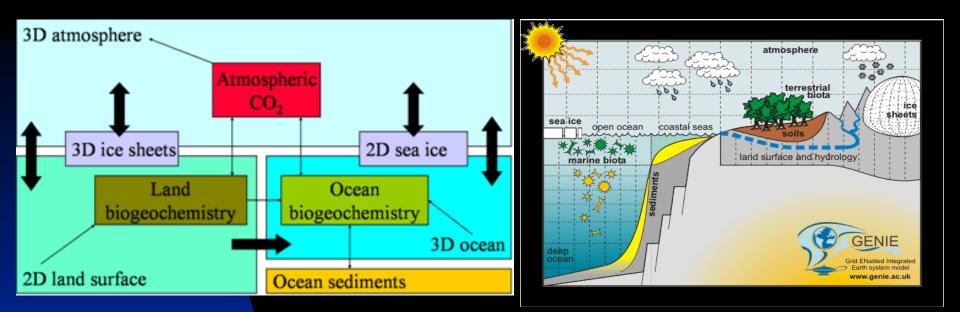

Observations and Predictions

Testing Hypotheses and Theories

- 1) A hypothesis is a simple explanation, model, or prediction of nature that requires testing (attempt to falsify or confirm).
- 2) Hypotheses are based on empirical physical evidence (data).
- 3) Hypotheses must be falsifiable (testable/predictable).
- 4) Hypotheses can never be proven as an absolute fact.
- 5) Hypotheses are always open to elimination or modification.
- 6) A theory is a broad, elegant, unifying explanation of a set of otherwise unconnected natural phenomena.
- A theory is established by the interconnection (framework) of well-tested and confirmed hypotheses that are, in turn, ³⁹
 supported by an enormous amount of physical evidence.

Testing Your Hypothesis

Scientific Predictions


Prediction

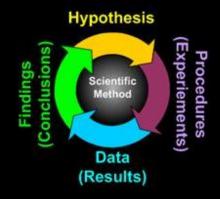
• A statement of what may happen in the future based on observations, data, experience or scientific

reason

Scientific Modeling and Predicting

Purpose of Modeling: Understand and predict how parts of the Earth operate and interact with each other

- --- Start simple and get more complicated over time
- --- Add more and more parameters over time
- --- Test computer models with real historic data
- ---- Develop and refine models to predict future scenarios


Application of the Scientific Method

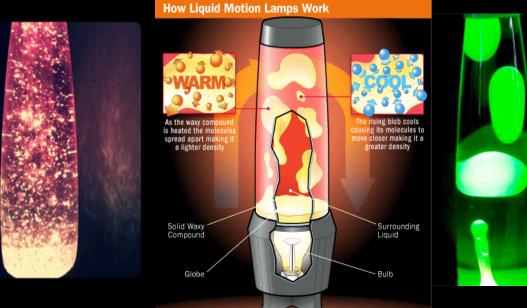
Glitter Lamp Inquiry

Purpose: Use the scientific method to gain a better understanding of how a glitter lamp works as a dynamic system

Procedure:

Get into groups of 2 to 4. Make good observations, explanations, predictions, and tests on the lamp. Focus on the dynamic properties of the lamp.

Lava Lamp as a Model for Convection Convection Process


 ✓ Fluid material at top of lamp is cooler than material at the bottom.

✓ Hotter material is less
 dense than cooler material

✓ Less dense fluid rises
 while more dense fluid
 sinks

✓ Heat and gravity drive the system

 Earth's atmosphere, ocean, mantle and core undergo convection

02006 HowStuffWorks

Mantle-Core Convection 44

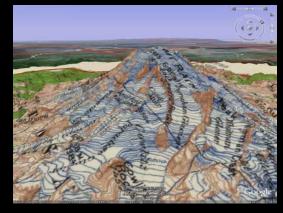
Application of the Scientific Method

Glitter Lamp Inquiry

Purpose: Use the scientific method to gain a better understanding of how a glitter lamp works as a dynamic system

Procedure:

Get into groups of 2 to 4. Make good observations, explanations, predictions, and tests on the lamp. Focus on the dynamic properties of the lamp.


Next Weeks Lab Topics

Topographic Maps

- Basic Concepts
- Reading
- Orientation

Pre-lab Exercises

- Read Topo Map Chapter in Lab
 Textbook
- Study Professor's Topo Map
 PowerPoint
- Print out the Topo Map Lab
 Worksheet
- Browse Instructor's Website @www.geoscirocks.com

